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The conformal charge is an important quantity which characterizes the nature 
of the two-dimensional phase transition. We report a first attempt to use a new 
numerical method to calculate the conformal charge. In this paper, we apply our 
method to the 2-dimensional, ~b 4, continuous-spin Ising model. By varying the 
parameters in the Hamiltonian, one can change continuously from the known 
Gaussian limit to the Ising limit. It is well known that the critical points for 
these two systems are not in the same universality class. We study this behavior 
for the Gaussian model, the single-well 4; 4 model, the border model, and the 
double-well ~b 4 model for a large lattice. Our results, while giving a good general 
picture, are not so far sufficient to differentiate whether the non-Gaussian cases 
studied belong to the Ising model universality class or not. Further studies of 
other lattice sizes should serve to improve greatly our conclusions. 

KEY WORDS: Monte Carlo simulations; conformal charge; central charge; 
conformal invariance; continuous-spin Ising model; critical phenomena; parallel 
computers. 

1. I N T R O D U C T I O N  A N D  S U M M A R Y  

A m a j o r  a d v a n c e  in the  t h e o r y  of  t w o - d i m e n s i o n a l  ( 2 D )  cr i t ical  

p h e n o m e n a  has  been  the  i n t r o d u c t i o n  of  the c o n f o r m a l  i n v a r i a n c e  

hypothes i s .  So far  as we k n o w ,  no  c o u n t e r e x a m p l e s  h a v e  been  d i scovered .  

Th is  idea  is an  e x t e n s i o n  o f  the  sca l ing  hypo thes i s ,  a n d  is also ca l led  " loca l  

scale i nva r i ance . "  T h e  semina l  p a p e r s  in this a r ea  are  those  of  Be lav in  

e t  al., (x) Cardy ,  (2) and  F r i e d a n  e t  al. (3) In  these  w o r k s  it was  r e c o g n i z e d  tha t  
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the only possible conformally invariant critical theories are broadly 
categorized by a parameter called the central charge. Furthermore, the only 
possible values of this charge are 

6 
c = l  m = 2, 3,..., and c>~l (1) 

rn(m + 1)' 

Until recently the central charge c, which is characteristic of bulk critical 
phenomena, could only be inferred either from finite-size corrections (4 6) or 
indirectly through comparison with the table of possible cases. (3) Recently, 
following the discovery by Zamolodchikov (7) of his c-theorem and the 
work of Cardy, (8) the notion of conformal invariance has been extended 
beyond the critical point. Singh and Baker (9) have shown that these results 
can be used to compute the central charge of a conformally invariant 
theory directly from bulk properties as a particular hyperuniversal ampli- 
tude ratio. They demonstrated this possibility with a high-temperature 
series approach. We will often refer to the central charge c, which is of 
course the structure constant multiplying, in the relation between the 
infinitesmal generators, the algebraic center of the Virasoro algebra 
induced by conformal invariance, as the conformal charge, to emphasis 
both concepts in a shorthand way. It is the purpose of this paper to report 
on the application of Monte Carlo methods to this problem. 

We shall treat as our problem of interest the 2D continuous-spin Ising 
model. In this model, the interaction energy is proportional to a sum over 
nearest neighbors (i, j )  of the product of the spin variables ~bi~bj, and the 
spin distribution is proportional to exp(-A~b 2 -  Gq~4). By a variation of 
parameters, one can move continuously from the Gaussian model to the 
spin-l/2 Ising model. For  the Gaussian model, the conformal charge can be 
shown (1~ to be c =  1. The critical exponents are e =  1 for the index of 
divergence of the specific heat, 7 = 1 for the index of divergence of the 
magnetic susceptibility, v = 1/2 for the index of divergence of the correla- 
tion length, and q = 0 for the index of the two-point correlation function at 
the critical temperature. At the other extreme, the Ising model, we know 
that (3) c = 1/2, ~ = 0 (logarithmic divergence),/~ = 1/8 for the index of con- 
vergence of the spontaneous magnetization, 7 = 1.75, v = 1, and t/--1/4. 
The continuous-spin Ising model is of interest in its own right. Many 
workers had thought for some time that as long as G > 0 ,  the critical 
properties of this model were in the Ising model universality class. 
However, Baker and Johnson (~1/ pointed out that there are reasons to 
believe that the border model (the case where A = 0 )  is not. A numerical 
indication of this possibility was also noticed by Barma and Fisher. (~2) In 
addition, Baker (13) found that in the one-dimensional, continuous-spin 
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Ising model, the cases where 0 < G < oo were in neither the Gaussian not 
the Ising model universality classes. 

Extensive numerical studies of the 2D continuous-spin @4 model have 
been carried out. See, for example, Milchev e ta l .  (141 and Total and 
Chakrabari. (15) However, relatively few published papers focus on the 
analysis of the universality and crossover from the Gaussian to the Ising 
limits. Standard, finite-size scaling studies have been made. (14) It was found, 
near the Ising limit, that the assumption of the Ising class universality was 
consistent with curve collapsing for systems ranging from 5 x 5 to 60 x 60. 
Near the Gaussian limit, the curve collapsing produces unsatisfactory 
results for finding conclusive values for the critical exponents. Bruce (16) has 
simulated the border model, and he does not see inconsistency with the 
Ising model class universality. 

In Section 2 we discuss the model to be studied, and give details on 
the various types of special cases for which we will give calculational 
results. In addition, we set out the formulas which are required for the 
computation of the central charge. We find that the main necessary quan- 
tity is the Fourier transform of the energy-energy correlation function in 
the long-wavelength region. 

In Section 3 we describe the hybrid Monte Carlo method which we 
will use. It is well adapted to be implemented on a massively parallel 
computer like the CM2. We describe the physical quantities for which 
we collect data and give a discussion of the possible errors inherent in our 
procedure. 

In Section 4 we describe a test of our methods on the Gaussian model 
where all the quantities of interest are already known exactly. We find that 
we obtain quite good results here. 

In Section 5 we apply our methods to cases where the spin distribution 
has a single peak, the border model, and where the spin distribution has 
a double peak. A good general picture emerges, but we have not been able 
to carry our computations sufficiently far as yet, even though a very con- 
siderable amount of CM2 time has been used, to pin down precisely the 
questions regarding the correct universality classes appropriate to these 
particular models. We had (unfortunately) used the Gaussian model 
estimates for the finite-size effects when we originally laid out our calcula- 
tions. Those effects are much smaller, as it turns out from a comparison 
with high-temperature series results for the border model, than is the case 
in the rest of the work. The departure of one of the authors (X.W.) from 
Los Alamos has precluded the immediate continuation of this study for dif- 
ferent-size lattices. We believe that this continuation would greatly improve 
our results. In the last section we give a few remarks concerning our results. 
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2. C O N T I N U O U S - S P I N  ISING M O D E L  

2.1. The Hami l tonian of the System 

The continuous-spin Ising model can be regarded as a one-component,  
ferromagnetic Ising model where the spins can have values from - oo to oo. 
It can be also viewed as the :r Euclidean boson field theory with a lattice 
cutoff after the quantization of the system. ~17'18) The Hamiltonian is defined 
as 

H =  E [--K(Oi, jr jOi, j+l)-{-AO~jq-ar j] (2) 
i, j 

where the plane square lattice has been used to discretize space. r is the 
value of the continuous spin at site i, j. Here A and G are the coefficients 
for the r and r in the potential well. The Hamiltonian (2) has been 
studied extensively both theoretically and numerically. 

All the thermodynamic properties are contained in the partition 
function, which can be written as 

f-boo f+oo 
Z . . . .  e-U{o} I~ &bid (3) 

--oo --oo i,j 

Aside from an elementary scaling factor for the field variable r there 
are only two independent parameters; we take these to be K and G as in 
ref. 17. We determine A(G) by the requirement that the second moment  of 
r is normalized to unity, i.e., ( r  = 1, or we determine the value of 
G by the same requirement when A is zero in the case of the border 
model. ~ The other common way of normalizing ~b is so that the r and 
the r terms are proport ional  to a single parameter. (14) Again there are 
only two independent parameters. 

There are several cases of interest to our study. The simplest case is 
where the r term is absent, i.e., A > 0, G = 0. This case is the Gaussian 
model. Under  the constraint ( r  = 1, A is 1/2. The critical point 
occurs at K c =  1/4 for 2D. Using the notation in ref. 14, we obtain the 
Hamil tonian for the Gaussian model as 

1 
H =  --~ E (~i,j~i+l,J~'-~i,j~i,j+l) - ~  E. . 2 ~i2j 

i,j t,j 
(4) 

It  is well known that this solvable model has the critical exponents ~ = 1 
and ~ = 1 and a conformal charge of c = 1, as mentioned above. We will use 
this model as a test of our method, and then study more general cases. 

For  the case when A > 0, G > 0, both the ~2 term and the r term have 
the same sign. The potential well has a single minimum. We call it the 
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single-well case. In the notation of ref. 14, we can also rescale the 
Hamiltonian into the following form: 

(5) 

The very special case A = 0, G > 0 lies on the border between the 
single-well and the double-well model (defined below). There is only one 
minimum in the potential term, but the curvature is zero at the minimum. 
Under the constraint ( r  G,~0.11423 .... This case is the 
so-called border model. In the notation of ref. 14, we may write 

1 
H =  --~ 2 (~i,j~i+ 1,j ~- ~i,j~)i,j+ 11 "[- ~ ~ 4 ~i4j (6) 

Lj t,J 

with ~ ~ 0.45692 .... 
In one dimension, it can be shown rigorously for this model that a 

new universality class occurs when 0 < G < oe which is different from the 
usual Gaussian and Ising universality. As mentioned in the introduction, in 
two dimensions this model is of great interest. There is no obvious reason 
why the border model should have the same universality as that of the 
single-well or the double-well model. 

When A < 0, G > 0, the potential has two degenerate minima. We call 
this case the double-well model. In the notation of ref. 14, 

I-I= -i Y. 2 - (7) 
i,j i,j 

In the limit of ~ - ,  oc, the double well becomes infinitely deep, and the 
system effectively reaches the Ising limit. 

After scaling q~ with a scaling factor of ~b o, we find the coefficients 
and fl given in Table I in terms of the original A, G. In the following sec- 
tions we shall examine each individual case to study its critical behavior. 

Tablel .  Rescaling of the Hamiltonian (K=r 

Model A G ~ r 

Gaussian 1/2 0 1 1/2 
Single-well 0.307756 0.037885 2.5 0.49619 
Border 0 0.11423 0.45692 1 
Double-well -- 1.08080 0.467251 2.5 0.92986 

822/69/5-6-1I 
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2.2. Computation of Conformal Charge Adopted to Monte 
Carlo 

The usefulness of conformal field theory lies not only at the critical 
point, but in the vicinity of the critical point as well. From 
Zamolodchikov's c-theorem, Cardy derived the following explicit formula, 
which extends the implications of eonformal invariance beyond the critical 
point(8): 

12~(/~c- P) 2 r,i 2 c =  lira ~ I r -  ( ( a f a r , > -  (~r}(/3r '))  (8) 
Z ~ c  N2(2--~) :  r,~, 

where e~ represents the interaction energy density at the plane-square lat- 
tice site r. Here I r - r ' l  is the distance between r and r'. (This notation is 
slightly different from the notation used in ref. 9. The difference is discussed 
in the latter part of this section.)/~ is the reduced coupling constant and tic 
is its value at the critical point, and ~ is the critical exponent for specific 
heat. We use a square lattice (with size N x N) to discretize the space. The 
energy density er is chosen to be the sum of four bonds connected to site 
r, and is given by 

1 
6~ Cr~br + 6 (9) 

Here the summation over ~ indicates summation over all the neighboring 
vectors, and the factor of 1/2 comes from the fact that each bond is 
attached to two lattice sites. 

Numerically, it is hard to sum over r, r' in Eq. (8) directly. One way 
to reduce the double sum to a single sum is to use the translational 
invariance of the system and transform e~ into Fourier space as 

1 
~k=~-~  ~ e i k " (~ f~r+a  - <~r~r+~}) (10) 

After this transformation, we can then calculate (l~kl 2 }, which is needed to 
determine the value of the conformal charge. The energy-density correla- 
tion function in Fourier space is given by 

1 (l~k12) - y cos[k.(r-r')] 
4N2 r, r ' ,  ~,, fi '  

For small k 
cos k �9 t = 1 --~tl (k 2 / 2 x  x •  + v t y  -r "'" 

where t = r -- r'. 

(12) 
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The summation over the lattice positions r will cancel the cross-term 
by lattice symmetry, so that (l~kl ~) is parabolic in Ikl and the rotational 
symmetry is thus recovered for the long-wavelength region. So we have 

(]Gkl 2) = a o + a 2  Ik]2+ --- (13) 

where ao and a2 are given by 

1 

a~ -- 4N2 r,r',&6' 

1 
a2-- 16N2 ~ pr - r ' l  2 ((~brq~r+6~br,~br,+~,)- (~ r~ r+~)@r '~ r '+~ ' ) )  

r,r',&6' (15) 

The definition of the energy density and the subsequent derivations are 
slightly different from the definition used in ref. 9, where e~ represent the 
interaction energy density at the bond of the square lattice instead of the 
sites. In that case, ek was given by 

1 { e x p [ i k ' ( r + l  

which differs from the definition in this paper by the small phase factor 
exp(ik �9 6/2). Consequently, 

( l e k l Z ) - 4 N  2 ~ cos k" r + ~ - - r ' - -  4i' (17) 
r,r',~5,~' 

X ((@r~r + ~i@r'~r'+ fi/) -- (~r@r +6) (~r '~ r '+~5 ' ) )  (18) 

The result for a0 is identical to Eq. (14), and that for a 2 differs from 
Eq. (15) by the addition of the extra term 

1 
E I~- -a ' l  2 (<Or~r + 6~r'~r '+ ~'> -- <~r~r + ~><r ~' ) (19) 16N 2 r,,, ~,~, 

The odd terms in the ~'s vanish by lattice symmetry. The term m Eq. (19) 
is small relative to that in Eq. (15) for a large lattice near the critical point. 
[The ratio is approximately a factor of ([fi[/~)2 where ~ is the correlation 
length of the system.] Equation (13) is only approximate in a Monte Carlo 
simulation, however, as the cross-terms vanish only like the Monte Carlo 
errors. 

The specific heat of the system is given by 

1 2 
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where r runs over the sites of the system. From Eq. (14) we have that 

Cv_ ao /~2 (21) 

The critical exponent ~ can be found by analyzing the specific heat Cv 
near the critical point. From Eqs, (8) and (15) we have the formula for 
conformal charge 

48rc 
c = lim a2(/? - ]~c) 2 (22) 

~ ( 2 - ~ )  2 

This formula can also be derived directly from (8) and (11) by noting 
that 

V2k(lekl2)U=0= ~ Ir-- r'12 ((ereC) -- @, )  (er,))  (23) 
r, r '  

where r and r' run over the sites of the lattice. 
In practice, we only need to calculate the spectrum of the local 

energy-energy correlation (l~kl 2) by Monte Carlo sampling of the ~b field 
and to transform it to Fourier space. Then, we need to find the curvature 
and height at k = 0. This determination can be done by fitting the 2D 
(l~kl 2) surface with a high-order polynomial. (Typically we have chosen 
eighth order for our studies.) The fitting coefficients give ao, a2 ..... Only the 
first two coefficients are needed for our purposes in this paper. A more 
detailed discussion of this procedure is given in Sections 3 and 4. 

3. M O N T E  CARLO S C H E M E  

3.1. Hybrid A lgor i thm 

To calculate the physical observables, we need to sample the con- 
figuration ~bi, j under the Boltzmann weights appearing in the partition 
function of the system. The sampling process is usually done by employing 
the conventional Metropolis algorithm where the sampled configuration 
~b,.,j is randomly chosen from the configurational space, or by employing 
the Langevin algorithm in which the sampled configurations are obtained 
by diffusive trajectories. 

We use here the hybrid Monte Carlo algorithm, (19) which is a com- 
bination of a molecular dynamics algorithm and the Metropolis algorithm. 
Within this algorithm, each ~bi, j is regarded as the coordinate of an "atom" 
with an assigned pseudomass m. In this way, there is an associated 
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pseudomomentum ~z,y for each "atom" at position ~bi, j. The pseudo- 
Hamiltonian of the new system can be written as 

npse {~b, u} = Z -~- + n{~b} (24) 
. .  2m l,J 

We can have well-defined Hamiltonian dynamics under the pseudo- 
Hamiltonian with a fictitious pseudotirne t. The equations of motion are 

dOi, j OHp~e d~i,j C~Hpse (25) 
dt &:g,j ' dt ~)i , j  

The partition function of the pseudosystem is then given by 

Zpse = f  ~I dq)i,J drci, j e-Hp~e{~'r~} 
i,j 

The integration over ~i,j is Gaussian and can be carried out easily. It gives 
rise t o  Zps  e = (2~rn) NL/2 Z, where Z is defined in Eq. (3). The pseudo parti- 
tion function thus differs from the true partition function only by a 
constant factor. The physical observables measured in this pseudosystem 
(under the Boltzmann weight for the pseudosystem) are thus the same as 
would be measured in the original system. 

The sampling of the system is achieved by the following procedure. We 
initialize all the q~,j to be zero. Then we repeat as required the following set 
of actions: First, we generate the ~i,9 according to a Gaussian distribution. 
Second, we measure the value of the pseudo-Hamiltonian H bef Third, we =~pse �9 
set the ~bi, j to be their last accepted values (which on the first pass are those 
given above). Fourth, we let the ~bi, j, n~,j evolve under Eq. (25) in 
pseudotime t. Fifth, after pseudotime T has elapsed, we measure the value 
of the pseudo-Hamiltonian H aft Sixth, we accept the newly computed ~b~,j --pse" 
with probability mini1, exp{-(H~srt e -  bet Hme)} ]. Finally, we measure the 
physical observables (after the thermalization of the system is achieved). 
We then, as indicated above, repeat this process as required. 

The value of T is typically, for our studies, chosen to be 3-5 times the 
characteristic time of each individual oscillator. We expect that the pseudo- 
H a m i l t o n i a n  H;fste after the evolution for pseudotime T deviates from its 
starting value. This small but finite error may heat up or cool down the 
system, and results in an inaccuracy in terms of the temperature control, 
because we use fairly large integration steps. Fortunately, this integration 
error can be completely canceled by combination with the Metropolis 
algorithm at step 6, It can be shown that the above procedure properly 
leads to the correct thermalization of the original system. (~9) After the 



1078 Wang and Baker 

thermalization of the system, we then measure the physical quantities for 
every sampled state until the statistical errors are small enough. The typical 
number of measurements we chose for a 128 x 128 size system ranged 
from 100,000 to 400,000. 

At or near the critical point, the configuration of ~bi.; primarily consists 
of domain walls. By evolving the system in phase space according to 
Eq. (25), the domain walls can propagate freely in space instead of encoun- 
tering large energy barriers. The propagation is essentially linear in t, in 
contrast to the diffusive motion sampled by the simple Metropolis or 
Langevin algorithms, which go only like the square root in t. The sampling 
of the configurational space is thus much faster, and results in less correla- 
tion among the consecutive measurements. In addition, this algorithm is 
naturally suitable for parallelization on massively parallel machines such as 
the Connection Machine. 

3.2. Measurements  

Any physical quantity can be measured in term of the sampled ~b~,j 
configurations. The ensemble average of a physical quantity A is given by 

1 
A{~bi} (26) ( A )  = ~  

m = l  

where M is the number of sweeps (repetitions). :The physical quantities of 
interest include the energy of the system 

1 E(fl) = ~5 ( H) (27) 

and the bond energy 

The conventional definition of the order parameter J( is 

l lL~N~i,j ) (29) x(B)=~  ,,; 

which is appropriate when there is a small magnetic field. For Monte Carlo 
simulations in zero field, we take 

1 L,N ) 
ZMC(f l )=~5{  ~ ~bi,; (30) 
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when fl > tic. The absolute sign here allows us to compute the spontaneous 
magnetization properly in zero field for the bimodal distribution of X 
expected when fi > tic. The susceptibility )~ of the system is 

z (~)  = N2( ( X 2 ) - ( X )  2) (31) 

where X is defined above. This expression does not lead to the ther- 
modynamically desired result on the first-order phase transitional line of 
zero magnetic field for fl>fic, so the commonly used expedient is to 
measure the susceptibility of the system with X replaced by XMc in 
Eq. (31). (14~ However, (31) is correct on the high-temperature side fl <tic 
where ( X ) =  0. Most of our studies hereafter are on the high-temperature 
side of the critical point and the definition (31) is used unless specified 
otherwise. 

The specific heat is given by Eq. (21). The critical exponents c~ and 7 
can be found by plotting Cv and Z versus f i - t i c .  The most important 
quantity is the energy-energy correlation function (]e(k)J 2), which gives 
the specific heat [and hence the critical exponent c~ and the conformal 
charge; see Eqs. (21) and (22)]. 

3.3. Discussion of  Possible Errors 

There are many possible sources of error, which can be classified as the 
statistical errors and the systematic errors. The major statistical error is due 
to the finite number of states sampled and measured. We typically take 
100,000-400,000 measurements for the physical quantities we studied in 
order to achieve reasonable statistics. Our simulations show that near the 
Gaussian limit, the statistical error is less severe than near the Ising limit. 

There are several sources of systematic errors. One is the finite-size 
effect. We limit our study to a system of size 128 x 128. The finite size of 
the system will suppress the divergence of the specific heat and the suscep- 
tibility at the critical point and will reduce the divergent peaks to finite 
heights. In addition, we expect that the peaks' position will not in general 
coincide with tic- So there is a narrow region within which the scaling 
behavior differs significantly from that of an infinite system. This region 
needs be excluded to obtain the appropriate exponents and the conformal 
charge. For the size of 128 x 128, we generally discard data from within 
about 1% of the critical point. 

Another systematic error involves the determination of the critical 
point tic from the MC simulations. The accuracy of tic can affect the 
accuracy of exponents and the conformal charge obtained. In practice we 
determine fl~ by running several MC simulations near tic and locate the 
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peak positions of Cv and ~. In this way a very good estimate of fic can be 
obtained, with more than three-decimal accuracy, for our 128 x 128 system. 
Finite-size scaling theory predicts that the fractional shift of the peak in 
say, C~, from tic is proportional to N-1/v. For the case of the Ising model, 
Ferdinand (2~ gives 

0.35 tic ~ 1 + - -  (32) 
/L,N N 

for periodic boundary conditions. Here, tic and flc, N are the critical points 
for the infinite-size system and size-N system, respectively. For N =  128, we 
have about 1.0027 for this ratio, or 3 parts in 103. For the Gaussian case 
the correction is much smaller, as v = 1/2. Estimates for the critical indices 
can be in error by a much larger amount, as can be seen by considering the 
case of extrapolation from fi/flc = 0.99 (to reduce higher corrections) with 
the peak-location-critical-temperature difference as quoted above for the 
Ising model. 

Far away from the critical point in the high-k region, we no longer 
have the rotational symmetry around the k = 0 point. To fit the (le(k)l:} 
to obtain a2, in principle, only the information in the vicinity of k = 0 is 
needed. However, an overly small area may not give a meaningful fit of 
the height and the curvature at the peak of (le(k)L~}, so in practice, a 
judgement has to made to choose an appropriate area to fit to find a:. 

The fitting procedures for the exponents and conformal charge also 
introduce systematic errors, especially for finding the curvature of (lekl:}. 
For that purpose only ao and a2 are used to find the specific heat and the 
conformal charge. However, we choose the eighth-order polynomial in our 
fitting procedure, i.e., find the coefficients for the terms Ik[ 2, [k[ 4, [k[ 6, and 
[k[ 8. The eighth order was chosen only for the purpose of being able to 
capture the nonquadratic effects near [k[ = 0, while at the same time main- 
taining the simplicity of the fitted form and the fitting procedure. The cross- 
terms such as the kxky  term are canceled because of the symmetry of the 
crystal up to second order; however, the higher-order cross-terms are, in 
general, not all canceled. Our fitting procedure, which does not take into 
account the higher-order cross-terms, suppresses the effects of these terms. 
To emphasize properly the region near k = 0 ,  we arbitrarily chose a 
weighting factor of a oc exp ( - cons t .  ]k[2/Afl), where Aft = [ f l - f lcI  and 
the constant const~0.01. This choice is a fairly reasonable one for our 
fitting procedure to compromise between the large-k and the small-k 
regions for 0.01 < Aft < 0.1. 
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4. TEST  OF O U R  M E T H O D  ON T H E  G A U S S I A N  M O D E L  

We would like to test quantitatively our method of studying the 
conformal charge and at the same time to study quantitatively the different 
aspects of the errors discussed in the last section. The solvable Gaussian 
model as the limit of r models where G --, 0 provides us with a good test. 
Although a successful test does not necessarily imply that our techniques 
work for all other cases, it nonetheless can provide a significant amount of 
insight. 

The Gaussian model Hamiltonian is given by Eq. (4). The spin-spin 
correlation function for a finite-size system with periodic boundary 
conditions is given by 

1 cos[k" ( r -  r ' ) ]  

> =sk-  A -  X(cos ; ; ;  cos 
(33) 

where k is in units such that the lattice spacing is unity. By using the 
identity 

<~r~r+g~r'~r'+5'>-- <~r~r+~5><r162 

= (r <r act'+ ~'> + (r + ~r <r ~'> (34) 

which holds for the Gaussian model, it is straightforward to show from 
Eqs. (9) and (33) by performing the sums over r, r', 5, and 5' that the 
energy-energy correlation for a finite-size square lattice is 

((cos qx + cos qv)2q - [ c o s ( k x -  qx) 

1 \ + cos(ky-qy)](cosqx+cosqy)J 

q \ x [ A - K ( c o s  qx+ cos qy)] ~ J 

(35) 

This formula can be calculated by numerical evaluation of the above 
summation. Thus one can compare it with the results of Monte Carlo 
(MC) simulation. In general, the correlations reflect the square lattice 
structure; however, the rotational symmetry should be seen for small 
enough [k[. 

The statistical error is one of the major errors of MC simulations. It 
is hard to estimate this error objectively. The error estimate from the 
binning analysis usually underestimates the true error. To see this error for 
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the Gaussian model, in Fig. 1 we plot the MC result against the analytical 
calculation from Eq. (35). The difference between these two is quite small, 
the biggest relative deviation from the theoretical calculation is 0.8%. As 
the temperature/~ gets closer to/~c, a peak emerges from the k = 0 region 
in the energy-energy correlation ~ ]e(k)l 2). F rom Eqs. (22) and (21), it can 
be seen that the height of the emerging peak determines the specific heat 
of the system, and the curvature at the tip of the peak determines the 
conformal charge of the system. 

The specific heat of the system can be obtained as in Eq. (21). We plot 
our result for C~ in Fig. 2. As we approach closer to the critical point, the 
finite-size effects start to play a very important  role. The C~ value is smaller 
than for the infinite-size system within this region. Our  experience here 

A 

Y 

500.0 

400.0 

,300.0 

200.0 

100.0 

0.0 

Fig. 1. The energy-energy correlation function (18k12) of the Gaussian model obtained from 
theoretical calculation of a system of 128 x 128 sites and the MC calculation for the same size 
system (no fitting procedure is used here). The relatively small difference that can be seen from 
the plot indicates the small statistical error from the MC sampling. The temperatures for the 
curves are, in order of decreasing height, /~//~c=0.995, 0.99, 0.98, 0.97, 0.95, and 0.93, 
respectively. 
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shows that within a region of (/?c-/~)//?c from 0.01 to 0.10, we are essen- 
tially in a good scaling region, for our system is 128 x 128. This region is 
wide enough for the Gaussian model to extract the critical exponent c~ by 
plotting the C~ in logarithmic scale and fitting the plot to a straight line 
with a standard )C 2 fitting routine. The slope is found to be c~ ~ 1.08 from 
the theoretical formula, and ~ ~ 1.09 from MC simulation. Both are higher 
than the expected value of 1.00. The fitting error is only about 1% from 
our fitting procedure. This value underestimates the true error significantly, 
for both theoretical results and the MC simulations. This error is likely to 
have originated from the systematic effects caused by a combination of 
finite-size effects and the effect of the region over which we chose to fit our 
lines (0.01 < A/~ < 0.1). This latter effect can be seen from a small curvature 
in the downward direction, where we do see the slope approaching 1 as 
/?--*/~c- The theoretical expression for the susceptibility in the Gaussian 

I 0 ~ 

- k .  , , MC 

IO z~ 

101.s 

1 0 t'0 

10-z5  

I I 

I 0 - z~  I 0 -1"5 10 -1"~ 

Fig. 2. The specific heat C v of the Gaussian model obtained from MC calculation for the 
128 x 128 sites system. Nearly straight line in log-log plot indicates the power-law in specific 
heat. 
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model can be easily calculated from Eq. (33) by summing over r and r' and 
combining with Eq. (31) and setting ( X ) =  0, which gives 

1 
Z - 2(A - 2K) (36) 

The susceptibility is obtained by Eq. (31). Both the analytical results and 
the MC results are plotted in Fig. 3. The fairly straight line indicates that, 
within the same region as plotted for C~, the susceptibility of is also 
effectively in the good scaling region. Similar to obtaining c~, the critical 
exponent 7 can be obtained in the same way, which gives ~ ~ 1.01, about 
1% deviation from the true value of 1.00. The fitting error for ~ is 0.005, 
which again underestimates the error. 

The calculation of the conformal charge c depends on the value of c~, 
as can be seen from Eq. (22). From the fitting result of (le(k)l 2) to find a2, 
we can obtain c(2 - ~)2 In Fig. 4, we show the results of our calculation for 

10~ I I I I I 

101~ 

10 ~'~ 

, , M C  
= .Theo~ 

I o , I I I i 

I0 -~ I0 -~~ I0 -1"a 10 -I"6 I0 -I~ 10 -I= 10 -I"~ 

Fig. 3. The susceptibility ~ for the Gaussian model obtained from theoretical calculation 
from Eq. (36) and MC calculation for the 128 x 128 site system. The two lines essentially 
overlap each other in the plot. 
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1.2 

%, 
0 . 8  
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0 

0.4 

0.0 
0.00 

Fig. 4. The comparison 

I I I 

, , MC 
............. Theory 

I I I 

0.02 0.04 0.06 0.06 

of the conformal charge of the Gaussian model obtained from 
theoretical calculation of the 128 x 128 site system and the MC calculation for the same size 
system. The fitting to obtain a 2 as in Eq. (13) is done with eighth-order polynomial fitting 
with rotational symmetry around k = 0. 

c ( 2 -  e)< Visually, the analytic data look like a straight line in terms of 3//, 
and so we have fit the MC data to a straight line and extrapolated 
to A / /=0  to find the value of c ( 2 - e )  z. We thus obtain the result 
of c ( 2 -  c02 ~ 1.004_+ 0.005 from our theoretical formula and 
c ( 2 - e ) 2  ~0.999 +_ 0.07 from our MC calculations. The error bars are the 
fitting error alone. It is interesting to notice that the results of c ( 2 -  e)2 for 
both theoretical and MC data are considerably less affected by the 
systematic effects than were ~ and ~. It is hoped that this nice property still 
persists for the rest of the cases where no exact solution is available. 

5. S I N G L E - W E L L ,  B O R D E R ,  A N D  D O U B L E - W E L L  M O D E L S  

The real interest in the continuous-spin ~b 4 model is for cases where the 
exact solution of the system is not available. We will focus our attention on 
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the cases of the single-well model, the border model, and the double-well 
model as discussed in Section 2. In particular, we are only going to choose 
one parameter set for each case as a representative of that case rather than 
carrying out an exhaustive study of the whole parameter space. 

The single-well case is an interesting one since it represents the effects 
of the nonlinear ~b 4 term, which will likely modify the critical behavior of 
the Gaussian model greatly. This region of parameter space has been 
studied by the technique of finite-size scaling. It has been shown that the 
curve-collapsing process of finite-size scaling produces a poor "universal" 
curve. (14) An "effective" critical exponent of v~0.8 was obtained in this 
case to describe approximately the critical behavior in this region. We 
choose ~=2.5  for this model, which is closer to the displacive limit 
compared with ref. 14. For the border model, except for the overall scaling 
factor for ~bi.j, no further parameters can be changed. We study the border 
model as given in Eq. (6). When the potential term has the shape of a 

2.0 

Fig. 5. 

X 

1.6 

1.2 

0.8 

"o~ ~ 
~176176 

0, I 
0.0 ~ "~'"'"~'r''A" .............. ~'A" 

- 0 . 2 0  - 0 . 1 0  0 .00  0 .10  0 .20  0 .30  

(p= - r 1 7 6  

The order parameter for the single-well model. The size of the system is 128 x 128. 
The critical temperature is about K~ ~ 0.2989. 
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double well as in (7), we choose the point in the parameter space which 
coincides with the simulation in ref. 14 where ~ = 2.5, so that comparison 
with previous work can be made easily. For  these parameters, it has been 
shown in ref. 14 that the finite scaling relations can be applied to obtain the 
curve collapsing for different sizes of the system. The behavior was found 
to be consistent with the Ising model universality assumption. 

For  convenience in the comparison of the different models, we here 
choose the normalization so that <~j)K:o = 1 for all of the models, so 
that far away from the criticality, all C~ will behave the same. We tabulate 
the parameters in Table I. 

Most of our studies are done with 128 x 128 systems. We illustrate the 
results in detail for the single-well model first. Qualitatively, the behaviors 
of the single-well model, the border model, and double-well model are 
similar. In the latter part of this section, we summarize our results for all 
the models studied. 

3 0 0 . 0  I I I I 

O 

Fig. 6. 

200.0 

100.0 
:" 

.Yr 
~....--" 
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~ 

"~'"---.,~ .............. . ,  

I ! 0 . 0  I I 

-0.20 -0. I 0 0.00 O. I 0 0.20 0.30 

(t o - r162176 
The specific heat for the single-well model. The size of the system is 128 x 128. The 

critical temperature is about Kc ~0.2989. 
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The magnetization XMc, specific heat C~, and the susceptibility Z of 
the single-well model are shown in Figs. 5-7. The apparent divergent peak 
appears near Kc ~ 0.2989 after normalizing <~b~j> = 1 (~c ~ 1.2142 before 
the normalization). This/~c is obtained by the simple extrapolation near the 
critical point as explained in Section 3.3. 

When the temperature is close to the critical temperature, we study the 
energy-energy correlation (lekl 2) of the model. As the critical temperature 
is approached, a divergent peak emerges near the k = 0  position. We 
illustrate this behavior in Figs. 8 and 9. We show <q%12) for the single-well 
model. Similarly, we have carried out simulations for the border model and 
double-well model with the same size of 128 x 128. It is noticeable that the 
amount of the statistical error present for our simulations gets increasingly 
larger as we approach the Ising side. So, relatively longer runs were made 
in our simulations of these systems to compensate for some of those effects. 

1500.0 

Fig. 7. 

1000.0 

500.0 

. . . . . . . . . . . . . .  - "  - . . . . .  . . . . . . . . . . . .  

-0.20 -0. I 0 0.00 O. I 0 0.20 0.30 

The susceptibility plot for the single-well model. The size of the system is 128 • 128. 
The critical temperature is about K c ~ 0.2989, 
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10 0 

% 

i %  

Fig. 8, The energy-energy correlation function for the single-well model, at temperature 
K = 0.2905 (or/~ = 1.1800) with I00,000 measurement taken. 

(The number of measurements for the border model and double-well model 
range from 200,000 to 400,000 in the data given below.) For the border 
model, the critical temperature is found to be near Kc~0.3288 (or 
~c~0.3288). This value is considerably different from the series analysis 
value of Baker and Johnson, (21~ who give K c ~0.3300, and the difference is 
in line with the predicted finite-size effect discussed in Section 3.3 for the 
Ising model. For the double-well model the specific heat and susceptibility 

I 

Fig. 9. The energy~nergy correlation function for the single-well model, at temperature 
K=0.2986 (or ~ 1 . 2 1 3 0 )  with 100,000 measurement taken. 

822/69/5-6-12 
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peaked at Kc ~0.3722 (or /~c ~0.4305; this value is slightly different from 
ref. 14, which has a value of ~ 0 . 4 2 8 ) .  

Because of the finite-size effects, near tic, the divergence in C~ and )~ for 
an, infinite system is rounded. Within a small region near Kc (say, Ap < 0.01 
for 128 x 128 systems), we expect the physical quantities calculated from 
the finite-size system, such as Cv, Z, etc., to differ from their true values for 
an infinite system. As we  just mentioned, we expect that the critical 
temperature obtained from the finite-size system should differ from the true 
critical temperature for the infinite system. So we cannot take too seriously 
the data within this region. 

In Fig. 10 we plot the specific heat with respect to the relative tem- 
perature from /?c- The nearly straight lines in the log-linear plot indicate 
that the leading term in the divergence of the specific heat is not inconsis- 

300 .0  
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2 0 0 . 0  
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\ 
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Fig. 10. Specific heat Cv for the different models studied. Notice that the plot is on a log- 
linear scale. The nearly straight lines indicate the logarithmic divergence for the single-well 
model, the border model, and the double-well model, which is significantly different from the 
power-law behavior of the Gaussian model. 
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tent with logarithmic behavior as is the case for the known Ising model. It 
is, however, noticeable beyond the uncertainty of statistical error that the 
C~ plot is not really a straight line. This observation may be due to many 
possible factors. In Fig. 11, we plot the susceptibility of the models we have 
studied so far. With the log-log scale of the plot, a nearly straight line 
indicates a power-law behavior of the susceptibilities (although the amount 
of statistical fluctuation for the double-well model is still noticeably strong 
even with 300,000-400,000 measurements taken). The slopes of the lines for 
the single-well model, the border model, and the double-well model are 
significantly different from the slope for the Gaussian model, indicating dif- 
ferent critical exponents. We calculate the slope of each line by fitting the 
plot to straight lines with a standard ~2 fitting routine. The fitted results 
are listed in Table II. The conformal charges are calculated from the results 

1 0 4 0  = ~ , , , 

I 0 ~ 

10 ~ 
10-2-2 

= = d o u b l e - w e l l  
"- "- border  

r s[ngle~-well  
~- ......... ~ GO U881017 

~ 

I I I I J 

10 - z ~  10 - ~  10 -1"6 10 -1~ 10 - l a  10 -1"~ 

(r162162176 
Fig. 11. Susceptibility Z for the different models studied, with the definition as in Eq. (31). 
Notice that the plot is on a log-tog scale. The nearly straight lines indicate the power-law 
divergence for the single-well model, the border model, and the double-well model. The slope 
is significantly different from the slope of the Gaussian model. 
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T a b l e  II. F i t t e d  y and  c ( 2 - a )  z f o r  D i f f e r e n t  M o d e l s "  

Gauss  Gauss  
(theory) (MC) Single-well Border Double-well 

7Me 1.0 1.013 • 0.005 1.66 • 0.02 1,74 __+_ 0.02 1.83 -- 0.07 
7 10 0.999 • 0.005 1.64 • 0.01 1,78 • 0.01 1.96 • 0.07 
K c 0.25 0.25 0.2989 • 0.001 0.3288 • 0.002 0.3722 • 0.002 
/~c 1.0 1.0 1.2142 • 0.006 0.3288 • 0.002 0.4305 • 0.002 
c(2 -- c~)2 1.004 • 0.005 0.999 _ 0.07 1.96 • 0.04 1.94 + 0.07 1.94 • 0.09 

a Error bars of ~ and c(2-c~) 2 are only the fitting errors which represent the deviation from 
straight lines; other types of errors are involved; the error bar for K c is estimated from the 
extrapolation of MC  points near K c. The first row of YMc estimates is calculated by using 
the absolute value definition of XMc as in Eq. (30) and the second row is calculated by using 
gq. (31) with ( X )  =0 .  
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Fig  12. c ( 2 - ~ )  2 for the different models studied. For the single-well model, the border 
model, and the double-well model, the result for c ( 2 -  c~) 2 is fairly close to 2 with fairly large 
error bars, as can be seen from the plot, However, they are well separated from the result of 
the Gauss• model, where the ~bi4j term is absent. 
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of (Jekl 2) for different models by the eighth-order polynomial fitting pro- 
cedure. The region of k fitted is chosen to be the same as for the Gaussian 
model test. Though we expect that the Kc obtained from the 128 x 128 
system is different from the true K,. for an infinite system, we here choose 
K,.,N instead of Kc to calculate c ( 2 -  c~) 2 with the Kc, N obtained from the 
128 x 128 system, where <lekl2> reaches its peak value for the same Kc, N. 
The results of our calculations are plotted in Fig. 12. 

6. D I S C U S S I O N  

In summary, we introduced a Monte Carlo scheme to study the 
universality behavior of 2D systems. We did not use the conventional 
finite-size scaling method. This scheme explicitly makes use of the results 
from the latest conformal theory which allows one to calculate the confor- 
mal charge of the system from the bulk property of the system near the 
critical point. We applied this method to the continuous-spin ~b~j system, 
which is an important problem in itself. We studied the system in different 
parameter regions, ranging from the known Gaussian limit through the 
single-well model and the border model to the double-well model. We 
calculated the order parameter, energy, specific heat, and susceptibility. 
From our results we extracted estimates of the critical exponents, such as 
c~ and 7, and we calculated the conformal charge from the measurement of 
the energy-energy correlation functions. 

In particular, we paid attention to the universality crossover from the 
Gaussian limit to the Ising limit. Although our study cannot be considered 
to be conclusive, it nonetheless provides us with a significant amount of 
information. 

One important insight to the crossover behavior can be seen from our 
results on the specific heat study as shown in Fig. 10. Far from criticality, 
the energy fluctuations behave roughly the same (this fact is related to our 
choice of the normalization < ~ j )  = 1 in our calculations). As we approach 
the critical point, the different curves start to deviate from each other; the 
specific heat of the Gaussian model diverges much faster than does that for 
the single-well model, the border model, and the double-well model. 

One can explain this result as follows. As the critical point is 
approached, the large-amplitude fluctuations dominate the energy-energy 
fluctuations. The ~b4j term would eventually control the energy-energy 
fluctuations and suppress this large-amplitude fluctuation irrespective of 
the details of the small-amplitude fluctuations. Without the suppression of 
the energy-energy fluctuations in the Gaussian limit from the ~b 4 term, i , j  

there is a dramatic difference from the rest of the models. 
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The result  of the conformal  charge ca lcula t ion  for the Gauss i an  model  
is aga in  well separa ted  from the rests of the models ,  as can be seen from 
Fig. 12. 

Wi th in  our  e r ror  bars  (sys temat ic  and  stat ist ical) ,  there are still many  
possibi l i t ies  for combina t ions  of  c and  c~, so tha t  c(2 - e)2 is consis tent  with 
the results of  our  calculat ions.  F r o m  the results we have calculated,  we can- 
no t  exclude, a m o n g  o ther  conformal ly  invar ian t  cases, the poss ibi l i ty  that  
the Ising mode l  universal i ty  class is val id  for all G > 0. Al te rna te  cases 
include,  for example ,  the case c = 0.7, ~ = 1.75, ~ = 0.25, c(2 - c~) 2 =- 2.14375, 

which is a l lowed by  conformal  invariance.  The independen t  de te rmina t ion  
of an add i t i ona l  cri t ical  index could  help d iscr imina te  between var ia t ions  in 

c and  those  in c~. As we have seen, however,  the accura te  de t e rmina t ion  of 
is difficult numerical ly ,  even in the G a u s s i a n  model .  The  usual  p rob lem 

tha t  has been observed  before by m a n y  workers  is that ,  in these models ,  
the divergence of the specific hea t  is relat ively small  and  is ha rd  to separa te  
clearly f rom the analy t ic  background .  At  least, however ,  a grea t  number  of 
possibi l i t ies  can be excluded by our  calculat ions.  
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